Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A goal of HIV vaccine development is to elicit antibodies with neutralizing breadth. Broadly neutralizing antibodies (bNAbs) to HIV often have unusual sequences with long heavy-chain complementarity-determining region loops, high somatic mutation rates and polyreactivity. A subset of HIV-infected individuals develops such antibodies, but it is unclear whether this reflects systematic differences in their antibody repertoires or is a consequence of rare stochastic events involving individual clones. We sequenced antibody heavy-chain repertoires in a large cohort of HIV-infected individuals with bNAb responses or no neutralization breadth and uninfected controls, identifying consistent features of bNAb repertoires, encompassing thousands of B cell clones per individual, with correlated T cell phenotypes. These repertoire features were not observed during chronic cytomegalovirus infection in an independent cohort. Our data indicate that the development of numerous B cell lineages with antibody features associated with autoreactivity may be a key aspect in the development of HIV neutralizing antibody breadth.

Original publication

DOI

10.1038/s41590-019-0581-0

Type

Journal article

Journal

Nature immunology

Publication Date

01/02/2020

Volume

21

Pages

199 - 209