Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Autoantibodies to leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein like-2 (CASPR2) are associated with clinically distinctive syndromes that are highly immunotherapy responsive, such as limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. These autoantibodies target surface-exposed domains of LGI1 or CASPR2, and appear to be directly pathogenic. In contrast, voltage-gated potassium channel (VGKC) antibodies that lack LGI1 or CASPR2 reactivities ('double-negative') are common in healthy controls and have no consistent associations with distinct syndromes. These antibodies target intracellular epitopes and lack pathogenic potential. Moreover, the clinically important LGI1 and CASPR2 antibodies comprise only ~15% of VGKC-positive results, meaning that most VGKC-antibody positive results mislead rather than help. Further, initial VGKC testing misses some cases that have LGI1 and CASPR2 antibodies. These collective observations confirm that laboratories should stop testing for VGKC antibodies and instead, test only for LGI1 and CASPR2 antibodies. This change in practice will lead to significant patient benefit.

Original publication

DOI

10.1136/practneurol-2019-002494

Type

Journal article

Journal

Pract Neurol

Publication Date

28/06/2020

Keywords

Assay, Autoantibody, Autoimmune, Encephalitis, Epilepsy, Immunology, Movement disorders, NMDA receptor, Neuroimmunology, Neuromyelitis optica, Neuromyotonia, Paraneoplastic