Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Trypanosoma brucei, in common with the other African trypanosomes, exhibits unusual cell-surface molecular architecture. The bloodstream form of the parasite is coated with a continuous layer of approximately five million variant surface glycoprotein (VSG) dimers that provide the parasite with a macromolecular diffusion barrier to guard against lysis by the alternative complement pathway. The procyclic form of the parasite has a more diffuse cell-surface coat made up of approximately 2.5 million copies of procyclic acidic repetitive protein (PARP). Within the VSG and PARP coats exist lower-abundance surface glycoproteins such as receptors and nutrient transporters. Both the VSG molecules and the PARP molecules are attached to the membrane via glycosylphosphatidylinositol (GPI) membrane anchors and the VSGs and one form of PARP are N-glycosylated. In this article, the structures of the N-glycans and the GPI anchors of T. brucei VSGs and PARPs are reviewed and simple models of the surfaces of bloodstream and procyclic trypomastigotes are presented.

Type

Journal article

Journal

Mol Biochem Parasitol

Publication Date

01/03/1998

Volume

91

Pages

145 - 152

Keywords

Animals, Carbohydrate Conformation, Carbohydrate Sequence, Glycosylation, Glycosylphosphatidylinositols, Life Cycle Stages, Membrane Glycoproteins, Models, Molecular, Molecular Sequence Data, Protozoan Proteins, Trypanosoma brucei brucei, Variant Surface Glycoproteins, Trypanosoma