Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Thiamine (vitamin B1) deficiency in the brain has been implicated in the development of dementia and symptoms of depression. Indirect evidence suggests that thiamine may contribute to these pathologies by controlling the activities of glycogen synthase kinase (GSK)-3β. While decreased GSK-3β activity appears to impair memory, increased GSK-3β activity is associated with the distressed/depressed state. However, hitherto direct evidence for the effects of thiamine on GSK-3β function has not been reported. Here, we administered thiamine or, the more bioavailable precursor, benfotiamine at 200mg/kg/day for 2weeks to C57BL/6J mice, to determine whether treatment might affect behaviours that are known to be sensitive to GSK-3β activity and whether such administration impacts on GSK-3β expression within the brain. The mice were tested in models of contextual conditioning and extinction, a 5-day rat exposure stress test, and a modified swim test with repeated testing. The tricyclic antidepressant imipramine (7.5mg/kg/day), was administered as a positive control for the effects of thiamine or benfotiamine. As for imipramine, both compounds inhibited the upregulation of GSK-3β induced by predator stress or repeated swimming, and reduced floating scores and the predator stress-induced behavioural changes in anxiety and exploration. Coincident, thiamine and benfotiamine improved learning and extinction of contextual fear, and the acquisition of the step-down avoidance task. Our data indicate that thiamine and benfotiamine have antidepressant/anti-stress effects in naïve animals that are associated with reduced GSK-3β expression and conditioning of adverse memories. Thus thiamine and benfotiamine may modulate GSK-3β functions in a manner that is dependent on whether the contextual conditioning is adaptive or maladaptive.

Original publication

DOI

10.1016/j.pnpbp.2016.11.001

Type

Journal article

Journal

Progress in neuro-psychopharmacology & biological psychiatry

Publication Date

04/2017

Volume

75

Pages

148 - 156

Addresses

EURON - European Graduate School for Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229 ER Maastricht, Netherlands; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severnii proezd, 1, Chernogolovka 142432, Russia; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow 125315, Russia; I.M.Sechenov First Moscow Medical University, Moscow, Russia.

Keywords

Brain, Animals, Mice, Inbred C57BL, Mice, Disease Models, Animal, Vitamin B Complex, Thiamine, RNA, Messenger, Stress, Psychological, Fear, Avoidance Learning, Conditioning (Psychology), Cognition Disorders, Gene Expression Regulation, Swimming, Time Factors, Male, Extinction, Psychological, Glycogen Synthase Kinase 3 beta