Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Asexual bacterial populations inevitably consist of an assemblage of distinct clonal lineages. However, bacterial populations are not entirely asexual since recombinational exchanges occur, mobilizing small genome segments among lineages and species. The relative contribution of recombination, as opposed to de novo mutation, in the generation of new bacterial genotypes varies among bacterial populations and, as this contribution increases, the clonality of a given population decreases. In consequence, a spectrum of possible population structures exists, with few bacterial species occupying the extremes of highly clonal and completely non-clonal, most containing both clonal and non-clonal elements. The analysis of collections of bacterial isolates, which accurately represent the natural population, by nucleotide sequence determination of multiple housekeeping loci provides data that can be used both to investigate the population structure of bacterial pathogens and for the molecular characterization of bacterial isolates. Understanding the population structure of a given pathogen is important since it impacts on the questions that can be addressed by, and the methods and samples required for, effective molecular epidemiological studies.

Original publication

DOI

10.1098/rstb.1999.0423

Type

Journal article

Journal

Philos Trans R Soc Lond B Biol Sci

Publication Date

29/04/1999

Volume

354

Pages

701 - 710

Keywords

Bacteria, Bacterial Infections, Humans, Molecular Epidemiology, Phylogeny, Recombination, Genetic