Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2015 SPIE. In a stimulated emission depletion (STED) microscope the region from which a fluorophore can spontaneously emit shrinks with the continued STED beam action after the excitation event. This fact has been recently used to implement a versatile, simple and cheap STED microscope that uses a pulsed excitation beam, a STED beam running in continuous-wave (CW) and a time-gated detection: By collecting only the delayed (with respect to the excitation events) fluorescence, the STED beam intensity needed for obtaining a certain spatial resolution strongly reduces, which is fundamental to increase live cell imaging compatibility. This new STED microscopy implementation, namely gated CW-STED, is in essence limited (only) by the reduction of the signal associated with the time-gated detection. Here we show the recent advances in gated CW-STED microscopy and related methods. We show that the time-gated detection can be substituted by more efficient computational methods when the arrival-times of all fluorescence photons are provided.

Original publication

DOI

10.1117/12.2081553

Type

Conference paper

Publication Date

01/01/2015

Volume

9331