Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We demonstrate far-field optical imaging at the nanoscale with unlabeled samples. Subdiffraction resolution images of autofluorescent samples are obtained by depleting the ground state of natural fluorophores by transferring them to a metastable dark state and simultaneously localizing those fluorophores that are transiently returning. Our approach is based on the insight that nanoscopy methods relying on stochastic single-molecule switching require only a single fluorescence on-off cycle to yield an image, a condition fulfilled by various biomolecules. The method is exemplified by recording label-free nanoscopy images of thylakoid membranes of spinach chloroplasts.

Original publication

DOI

10.1021/nl1027638

Type

Journal article

Journal

Nano Lett

Publication Date

13/10/2010

Volume

10

Pages

4249 - 4252

Keywords

Chlorophyll, Fluorescent Dyes, Microscopy, Fluorescence, Spinacia oleracea, Thylakoids