Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present a numerical study of the nonlinear mechanical model for morphogenesis proposed by Oster et al. (1983) with the aim of establishing the pattern forming capability of the model. We present a technique for mode selection based on linear analysis and show that, in many cases, it is a reliable predictor for nonlinear mode selection. In order to determine the set of model parameters that can generate a particular pattern we develop a technique based on nonlinear least square fitting to a dispersion relation. As an application we present a scenario for sequential pattern formation of dermal aggregations in chick embryos which leads to the hexagonal array of cell aggregations observed in feather germ formation in vivo.

Type

Journal article

Journal

J Math Biol

Publication Date

1986

Volume

24

Pages

525 - 541

Keywords

Animals, Cells, Mathematics, Models, Biological, Morphogenesis