Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypothalamic orexin/hypocretin neurons recently emerged as key orchestrators of brain states and adaptive behaviors. They are critical for normal stimulation of wakefulness and breathing: Orexin loss causes narcolepsy and compromises vital ventilatory adaptations. However, it is unclear how orexin neurons generate appropriate adjustments in their activity during changes in physiological circumstances. Extracellular levels of acid and CO2 are fundamental physicochemical signals controlling wakefulness and breathing, but their effects on the firing of orexin neurons are unknown. Here we show that the spontaneous firing rate of identified orexin neurons is profoundly affected by physiological fluctuations in ambient levels of H+ and CO2. These responses resemble those of known chemosensory neurons both qualitatively (acidification is excitatory, alkalinization is inhibitory) and quantitatively (approximately 100% change in firing rate per 0.1 unit change in pHe). Evoked firing of orexin cells is similarly modified by physiologically relevant changes in pHe: Acidification increases intrinsic excitability, whereas alkalinization depresses it. The effects of pHe involve acid-induced closure of leak-like K+ channels in the orexin cell membrane. These results suggest a new mechanism of how orexin/hypocretin networks generate homeostatically appropriate firing patterns.

Original publication

DOI

10.1073/pnas.0702676104

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

19/06/2007

Volume

104

Pages

10685 - 10690

Keywords

Acids, Action Potentials, Animals, Carbon Dioxide, Hydrogen-Ion Concentration, Hypothalamus, Intracellular Signaling Peptides and Proteins, Mice, Mice, Transgenic, Neurons, Neuropeptides, Orexins, Patch-Clamp Techniques