Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The tumour-associated antigen 5T4 is an attractive target for cancer immunotherapy. However to date, reported 5T4-specific cellular immune responses induced by various immunisation platforms have been largely weak or non-existent. In the present study, we have evaluated a heterologous prime boost regime based on the simian adenovirus ChAdOx1 and modified vaccinia virus Ankara (MVA) expressing 5T4 for immunogenicity and tumour protective efficacy in a mouse cancer model. Vaccination-induced immune responses were strong, durable and attributable primarily to CD8+ T cells. By comparison, homologous MVA vaccination regimen did not induce detectable 5T4-specific T cell responses. ChAdOx1-MVA vaccinated mice were completely protected against subsequent B16 melanoma challenge, but in therapeutic settings this regime was only modestly effective in delaying tumour outgrowth. Concomitant delivery of the vaccine with monoclonal antibodies (mAbs) targeting immune checkpoint regulators LAG-3, PD-1 or PD-L1 demonstrated that the combination of vaccine with anti PD-1 mAb could significantly delay tumour growth and increase overall survival of tumour-bearing mice. Our findings support a translation of the combinatorial approach based on the heterologous ChAdOx1-MVA vaccination platform with immune checkpoint blockade into the clinic for the treatment of 5T4-positive tumours such as prostate, renal, colorectal, gastric, ovarian, lung cancer and mesothelioma.

Original publication

DOI

10.18632/oncotarget.17666

Type

Journal article

Journal

Oncotarget

Publication Date

07/2017

Volume

8

Pages

47474 - 47489

Addresses

The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom.