Structure of the full SARS-CoV-2 RNA genome in infected cells
bioinformatics molecular biology virology
Authors:Lan et al
Link to paper: https://www.biorxiv.org/content/10.1101/2020.06.29.178343v1
Journal/ Pre-Print:bioRxiv
Tags: Bioinformatics, Molecular biology, Virology
Research Highlights
-
First in-cell map at single nucleotide resolution of the secondary structures of the SARS-CoV-2 genome
-
Uncover new structures in regulatory elements, including the genomic transcription-regulating sequences (TRSs)
-
Provide new structures of the frameshift element, which differ from previous in vitro models. There is evidence for heterogeneity of
Summary
The authors performed the first in-cell map of the secondary structures of the SARS-CoV-2 genome. They used dimethyl sulphate mutational profiling with sequencing (DMS-MaPseq) to find unpaired nucleotides, which were used to constrain in-silico pairing predictions. The 5’UTR structures are similar to previous reports, but new structures were found for the genomic Transcription-Regulating Sequences (TRSs), which mostly lie within stem loops. The structure of the frameshift element (FSE), an important regulatory element of SARS-CoV-2 viral cycle, differed from previous in vitro observations, which the authors argue were an artefact of short length of the refolded viral RNA used for the in vitro studies. Clustering of DMS-MaPseq reads suggested the presence of two distinct FSE structures across different viral copies.
Impact for SARS-CoV2/COVID19 research efforts
Understand the virology and/or cell biology of SARS-CoV2/COVID19
Better understanding of the secondary structures of the SARS-CoV-2 genome, which will be useful for a better design of RNA-based therapeutics.
Study Type
-
In silico study / bioinformatics study
-
In vitro study
Strengths and limitations of the paper
Novelty: First in-cell investigation of the secondary structure of the SARS-CoV-2 genome at a single nucleotide resolution. This provides a map of the major secondary structures of the SARS-CoV-2 genome in cells.
Standing in the field: The major secondary structures at the 5’UTR of the SARS-CoV-2 genome found in this study agree with what has been previously observed in vitro or in other viruses, such as SARS-CoV. A comparison of their data with structures computationally predicted by RNAz and Contrafold, found a better agreement with the former. The major difference is observed for the secondary structures of the frameshift element, which differ from previous in vitro studies. However, the authors show that the difference could be explained by the size of the RNA fragment used for determining the secondary structure in vitro, as longer fragment size and a full-length virus show similar secondary structure as the in-cell data.
Appropriate statistics:Yes
Viral model used:SARS-CoV-2
Translatability: No direct one. However, the determination of the secondary structures of the SARS-CoV-2 genome will allow a better design of RNA-based therapeutics.
Main limitations: 1) Low number of reads, which could result in some secondary structures not observed because they will be below statistical significance.
2) The DMS-MaPseq experiment was performed on a population of cells infected with SARS-CoV-2, therefore the secondary structures observed are a mix of viral genomes at different stages of the viral cycle. Further work will be required to determine secondary structures unique to each stage of the virus and their dynamics across the viral cycle.