

HIDI DAY 1/10/2018 IMMUNOPEPTIDOMICS

Dr. Nicola Ternette The Jenner Institute nicola.ternette@ndm.ox.ac.uk

Immunopeptidomics: Analysis of MHC ligands by nUPLC-MS

Immunopeptidomics Group

TripleTof 5600 AB SCIEX,

Fusion Lumos Thermo Scientific

Dr Robert Parker Dr Annalisa Nicastri

Dr Yoanna Ariosa

Xu Peng

TDI MS laboratory led by Benedikt Kessler

Jacques Neefjes (Leiden University Medical Centre, Leiden, The Netherlands)

Stefan Stevanovic (University of Tubingen, Tubingen, Germany)

Etienne Caron (ETH, Zurich, Switzerland)

Nathan Croft (Monash University, Melbourne, Australia)

Albert Heck (University of Utrecht, Utercht, The Netherlands)

Markus Mueller (Swiss Institute of Bioinformatics, Lausanne, Switzerland)

Alessandro Sette (La Jolla Institute for Allergy and Immunology, La Jolla, USA)

Lennart Martens (Ghent University, Ghent, Belgium)

1ST HUPO HUMAN IMMUNO-PEPTIDOME PROJECT (HIPP) SUMMER SCHOOL

ORGANIZED BY:

MICHAL BASSANI-STERNBERG (Ludwig Institute, Lausanne, Switzerland)

MIGUEL MARCILLA (Spanish National Biotechnology Centre, Madrid, Spain)

FABIO MARINO (Ludwig Institute, Lausanne, Switzerland)

STEFAN TENZER (University of Mainz, Mainz, Germany)

NICOLA TERNETTE (University of Oxford, Oxford, UK)

SEPTEMBER 10-13, 2018

THE SPANISH NATIONAL BIOTECHNOLOGY CENTRE (CNB) AND THE STUDENT RESIDENCE (CSIC) IN MADRID 2018

MHC class I

http://intranet.tdmu.edu.ua/data/kafedra/internal/patologanatom/ classes_stud/en/med/lik/ptn/Pathomorphology/3/04_Pathomorph_immune_syst.htm

5

WebLogo 3.5.0

MHC class II

http://intranet.tdmu.edu.ua/data/kafedra/internal/patologanatom/ classes_stud/en/med/lik/ptn/Pathomorphology/3/04_Pathomorph_immune_syst.htm

Human

Hybridoma Line	Туре	Antigen	ATCC	sepharose
W6/32	lgG _{2a}	HLA class I ABCDE	ATCC [®] HB-95	A/G
L243	lgG _{2a}	HLA DR (Ia)	ATCC [®] HB-55	A/G
IVD12	lgG ₁	HLA DQw3	ATCC [®] HB-144	G
B7/21	lgG ₃	HLA DP	na	G
IVA12	IgG_1	HLA DR, DQ, DP	ATCC [®] HB-145	G
MA2.1	lgG1	HLA A2, B17	ATCC [®] HB-54	G
ME1	lgG ₁	HLA B7, Bw22, B27	ATCC [®] HB-119	G
DT9	lgG _{2bк}	HLA C (HLA E)	na	A/G

Mouse

Hybridoma Line	Туре	Antigen	ATCC	protein
HB-51	lgG _{2a}	H-2 Kb, Db	ATCC [®] HB-51	G
M5/114.15.2	(rat) IgG _{2b}	I-A b, I-A d, I-A q, I-E d, I-E k	ATCC [®] TIB-120™	G

1-5 mg antibody required per experiment!

Sofron et al. 2016. Eur. J. Immunol. 46: 319–328 DOI: 10.1002/eji.201545930

ALL CITAND COLORADA AND COLORADA

\$4:**7**398

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.011.012.013.014.015.0

0.053 2 - 3.117 3- 3.583 ACN, 0.1%HA: 2.0 % Flow: 1.000000 ml/min

class II

STRUCTURE OF STRUCTURE

2.89

13.32

Discovery Experiments (DDA)

Table: Peptide yield from various starting material

Cell number	Approx. size	Protein [mg]	Peptide sequences
5·10 ⁶	1 x 1 x 5 mm (5 mm ³)	1 mg	<100
5·10 ⁷	5 x 5 x 1 mm (25 mm ³)	5 mg	>1,500
5·10 ⁸	5 x 5 x 10 mm (250 mm ³)	50 mg	~10,000
2·10 ⁹	10 x 10 x 10 mm (1000 mm ³)	200 mg	15,000

Estimated amount of MHC molecules per cell: 100,000

5.10⁸ peptide molecules equivalent to 1 femtomol of peptide

www.wikipedia.com

K^{RWII}L_{GL}N_KI

b01	K RWIILGLNKI	y10
b02	KR WIILGLNKI	y09
b03	KRW IILGLNKI	y08
b04	KRWI ILGLNKI	y07
b05	KRWII LGLNKI	y06
b06	KRWIIL GLNKI	y05
b07	KRWIILG LNKI	y04
b08	KRWIILGL NKI	y03
b09	KRWIILGLN KI	y02
b10	KRWIILGLNK I	y01

THE JENNER INSTITUTE DEVELOPING INNOVATIVE VACCINES

Software evaluation

CID: low resolution, high sensitivity; HCD: high resolution, lower sensitivity

Decoy database search

PeptideProphet

Target

Decoy

ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE

ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE ORIGINALPROTEINSEQUENCE CRNIEGUIUNQAELSLNPIREOT UNQAENIEGUIUNQAELSLNPIR TOECRNIEGUIAELSLNPIREOT OTORNIEGUIUNQAELSLNPIRE NQAENIEGNIEGUIUNQAELSPI

ECNEUQESNIETORPLANIGIRO

ECNEUQESNIETORPLANIGIRO

ECNEUQESNIETORPLANIGIRO

ECNEUQESNIETORPLANIGIRO

ECNEUQESNIETORPLANIGIRO

Threshold-based filtering

Probability-based filtering

Keller *et al.* Anal.Chem. 2002. Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search

DATA EXAMPLE I Characterisation of Antigen Presentation of Viral Vector Vaccines

MHC peptide presentation in MVA-HIVconsv infection

Ternette et al. JVI 2015

HIVconsv peptides identified in MVA-HIVconsv transfected cells

				HIVconsy		DABCD	АВСД
					GAG POL	VIF ENV	TAGs
Sequence	length [number of amino acids]	Position in HXB2 (amino acid)	Position in HIVconsv (amino acid)	Previously reported in LANL-HSD	HLA supertype (allele)	max. score [-10lgP]	time-point post infection [h]
YKRWIILGLNK	11	Gag 262-272	58-68	KRWIILGLNK	A2 (A*02:01)	15.30	1.5
KRWIILGLNK	10	Gag 263-272	59-68	KRWIILGLNK	A2 (A*02:01)	16.35	2.5
IYKRWIILGLNK	12	Gag 261-272	57-68	KRWIILGLNK	A2 (A*02:01)	15.32	3.5
IILGLNK	7	Gag 266-272		KRWIILGLNK	na	14.82	2.5/3.5
FPISPIETVPVKL	13	Pol 155-167	194-206	SPIETVPVKL	B7 (B*81:01)	56.52	3.5/6
SPIETVPVKL	10	Pol 158-167	197-206	SPIETVPVKL	B7 (B*81:01)	41.33	2.5/3.5/6
AIFQSSMTK	9	Pol 313-321	351-360	AIFQSSMTK	A3 (A*03:01)	47.95	2.5/3.5/6
KIWPS-RWKPK ^a	10	Gag/Pol	131-140	na	na	19.25	6
RTWKSLVK	8	Vif 19-26	412-419	RIRTWKSLVK	A3 (A*03:01)	28.89	6
KLTP-WVPAHK ^a	10	Env/Pol	518-527	na	na	40.52	6
RKGGIGGYSAG	11	Pol 902-912	663-673	KRKGGIGGYSAGERI	B27	14.82	6

a – Peptides spanning a junction (-) between two conserved regions in the HIVconsv immunogen, thus creating a novel epitope not present on HIV-1-infected cells.

HIVconsv epitope presentation correlates with intracellular protein abundance

Ternette et al. JVI 2015

Table 1. Patient characteristics

Patient ID	Age	Sex	Diagnosis	HLA-A2 staining
1	53	F	Ductal NST	+
2	70	F	Pure special type -	+
			Basal	
3	50	F	Ductal / NST	+
4	65	F	Ductal / NST	+
5	31	F	Ductal / NST	+
6	50	F	Ductal / NST	+
7	88	F	Ductal / NST	-
8	71	F	Ductal / NST	+
9	76	F	Ductal / NST	+
10	38	F	Ductal / NST	-
11	46	F	Ductal / NST	-
12	61	F	Classic Basal with	-
			Squamous areas	
13	88	F	Ductal/Metaplastic	-
			Mixed	
14	56	F	Ductal / NST	+
15	60	F	Ductal / NST	-

* NST, no-specific type; N/A, not applicable

Ternette et al. Proteomics 2018

Triple negative breast cancer (TNBC)

A2-binding peptides are returned by Gibbs clustering

9 C

8 9 C

8 9 C

Ternette et al. Proteomics 2018

Shortlisting Protein Antigens in a cohort study: aTaCC

average Tumour-associated Cohort Coverage

Ternette et al. Proteomics 2018

