Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In a new Oxford Science Blog, Charvy Narain (Communications & Public Engagement Manager, Radcliffe Department of Medicine) talks to some of the Oxford University researchers coming together to fight the novel Coronavirus outbreak.

2019-nCov novel coronavirus microscope close up concept

What do a mathematician, an epidemiologist, a vaccine developer, a protein crystallographer and a whole bevy of immunologists and infectious disease specialists have in common? Answer: they’re just some of the Oxford University researchers coming together to fight the novel Coronavirus outbreak which has (to date) killed more than 1,350 people across the globe, with over 60,000 people infected.

The outbreak, which the World Health Organisation has now declared a global health emergency, is caused by a new type of an old foe: coronaviruses are common enough to be one of the causes of the common cold. But they can cause a range of respiratory symptoms from mild to serious – it was a coronavirus that was responsible for the 2002-2004 outbreak of the severe acute respiratory syndrome (SARS), though the novel coronavirus (until recently known as 2019-nCoV, though now dubbed SARS-CoV-2) has already outstripped the SARS death toll in the three months since it has been active.

Like the SARS virus, which was traced back to civet cats, this previously undescribed SARS-CoV-2 is also likely to have been transmitted from an animal to humans – most people in the first cluster of cases worked at or were frequent visitors to one single seafood market in Wuhan in China. But it is now clear that SARS-CoV-2 can be also transferred from an infected person to another person, and these human-to-human transmissions are how the outbreak is currently spreading.

Read the full Oxford Science Blog on the University of Oxford website

Similar stories

Researchers find new cells that repair tissue

NDM

Researchers from Nuffield Department of Medicine have discovered that a newly discovered group of cells can help repair tissues in the body.

Rapidly spreading multidrug-resistant parasites render frontline malaria drug ineffective in southeast Asia

NDM

A rapidly evolving multi-drug resistant lineage of P. falciparum malaria parasites continues to spread in South East Asia, leading to alarmingly high treatment failure rates in Cambodia, Thailand and Vietnam for DHA-piperaquine, one of the world’s most important anti-malaria drugs.

New study shows faster way to cure vivax malaria

NDM

A large clinical trial in Africa and Asia has shown that a 7 day course of high dose primaquine, a drug used to treat P. vivax malaria, is well tolerated and just as effective as the current standard 14 day regimen, according to a study published this week in The Lancet. These findings have important implications for the treatment and elimination of vivax malaria in the Asia Pacific.

Award-winning citizen science project tackling TB gets millionth classification

NDM

An award-winning Oxford-based international project to tackle antibiotic resistance has achieved its one millionth classification.

UK-led study marks shift towards genetic era in tackling TB

NDM

In a landmark study that may herald a quicker, more tailored treatment for the millions of people around the world living with tuberculosis (TB), UK researchers have shown how our understanding of TB’s genetic code is now so detailed that we can now predict which commonly used anti-TB drugs are best for treating a patient’s infection and which are not.

MAIT cells protect against pulmonary Legionella longbeachae infection

NDM

New paper published in Nature Communications from researchers in Respiratory Medicine Unit, NDM Experimental Medicine'