Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Zika virus (ZIKV) epidemic has left thousands of children in devastating conditions that has had a huge impact on their entire life. Understanding the pathology and management of the condition remains a priority for researchers.

Professor Zoltán Molnár and a team of international researchers, including Patricia Garcez from the Federal University of Rio de Janeiro, Brazil, and Helen Stolp from King's College London, have published a paper, entitled "Zika virus impairs the development of blood vessels in a mouse model of congenital infection", which studies the development abnormalities associated to ZIKV. 

In the paper, which has been published in Scientific Reports, the team demonstrated a novel mechanism as to how the ZIKV infection impacts on blood vessels development. The study demonstrated the previously described reduction of the cortical progenitors and cortical neurons as a result of ZIKV infection, but it revealed that the ZIKV infected brains displayed a reduction in brain vasculature density and vessel branching. 

These impaired vascular patterns were not only apparent in the brain, but also in the placenta and retina. Moreover, proteomic analysis has shown that angiogenesis proteins are deregulated in the infected brains compared to controls.

These new results indicate that ZIKV impairs angiogenesis in addition to neurogenesis during development. The study suggests that ZIKV is responsible for additional angiogenic defects that could contribute to the reduced neurogenesis in the ventricular zone and the later reduced cortical volume. The widespread vasculature defects contribute to the congenital ZIKA syndrome to affect not only the general brain growth but also the general development of the unborn child.

The study emphasises these novel disease mechanisms that have to be considered in management and in direct therapeutic targeting.

Similar stories

Leducq-funded transatlantic network set to pioneer new diagnosis and treatment of heart disease

Professor David Paterson, in collaboration with the UCLA’s Professor Kalyanam Shivkumar, has been awarded a prestigious Leducq International Network of Excellence Program Award of $8 million (£6.3M) to set up a major new transatlantic network linking world leading researchers from the USA and Europe to develop ‘Bioelectronics for neurocardiology diagnosis and therapeutics’.