Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study published in the Journal of Experimental Medicine reveals how IL-10 and PGE2 work together to prevent inflammatory tissue damage and maintain a healthy gut balance

© Shutterstock
The new study shows the IL-10-PGE2 axis ensures macrophages are effective at killing potentially harmful bacteria

The inflammatory bowel diseases (IBD) encompassing crohn's disease (CD) and ulcerative colitis (UC) are chronic painful inflammatory conditions of the gastrointestinal tract affecting at least 5 million people worldwide. Generally, inflammation is controlled by particular immune cells together with molecules such as cytokines and lipid mediators. How these molecules work together, however, has been poorly understood. A new study reveals a novel regulation between cytokine IL-10 and lipid mediator PGE2 that functionally connects them to intestinal inflammation.

Published in the Journal of Experimental Medicine, the study shows that IL-10 and PGE2 pathways are intrinsically linked and function as an integrated module to maintain intestinal homeostasis, the balance in our gut. Any disruption to the balance impacts their ability to control macrophage function in the intestine which may have important consequences for both host defence against infection as well as maintenance of intestinal homeostasis.

The project was a collaboration between universities and institutes led by Fiona Powrie, Professor of Musculoskeletal Sciences and Director of the Kennedy Institute at the University of Oxford, Dr Subhankar Mukhopadhyay, Senior Lecturer in Innate Immunity at King's College London, and Professor Gordon Dougan, Glaxo-SmithKline Professor of Microbial Pathogenesis at the University of Cambridge and Former Senior Group Leader at the Wellcome Sanger Institute.

Subhankar commented: "IL-10 is known to promote gut health by preventing immune cells called macrophages from becoming overstimulated by the large number of bacteria that inhabit the gut. Our study reveals that IL-10 fine tunes the secretion of lipid mediator PGE2, preventing inflammatory tissue damage and ensuring that macrophages can kill harmful bacteria effectively."

"Increased PGE2 signalling in the intestine has been reported in IBD patients and the new data suggest that PGE2 may contribute directly to the development and progression of disease. Further examination of this pathway, including the role of distinct PGE2 receptors found on macrophages may open up new therapeutic avenues," said Fiona.

The team studied an infantile onset IBD patient lacking a functional IL10RB gene. It was shown that a loss of IL-10 signaling induced a microbial hyperresponsiveness and over production of PGE2 in macrophages that in turn limited their capacity to kill bacteria, fuelling chronic intestinal inflammation. When introducing functional copies of the IL10RB gene, PGE2 synthesis was inhibited and bacterial killing in macrophages was enhanced showing a regulatory interaction between IL-10 and PGE2.

This study was funded by the Wellcome Trust, and Fondation Louis Jeantet and supported by the NIHR Oxford Biomedical Research Centre, University of Oxford.

Similar stories

Communication at the crossroads of the immune system

In his inaugural article in the Proceedings of the National Academy of Sciences as an NAS member (elected 2021), Prof Mike Dustin and his research team in Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences have explained how messages are passed across the immunological synapse. The research could have implications for future vaccine development and immunotherapy treatments.

Leducq Foundation grant boosts cardiovascular research

The Leducq Foundation has awarded $7.5 million to researchers at the University of Oxford and their collaborators to advance immunotherapy as a treatment for cardiovascular disease, the leading cause of death in the UK.

Defining the role of resident memory B cells in the fight against influenza

Researchers at the Kennedy Institute of Rheumatology have used 3D and live-imaging to show how resident memory B cells boost antibodies to fight influenza.

New therapeutic target identified in spondyloarthritis

A new study published in Nature Communications identifies a key driver of joint and intestinal inflammation that could lead to future treatment of the chronic inflammatory disease.

Dissecting TNF signalling in inflammatory disease

New research from Dr Richard Williams’ group at the Kennedy Institute suggests a route for the development of more selective – and effective – therapies for immune-mediated inflammatory disease.

Naturally occurring compound spermidine boosts vaccine responses in old mice

A new study by Kennedy Institute's Professor Katja Simon, and colleagues published in Molecular Cell shows that spermidine, a naturally occurring metabolite found in most human cell types, boosts antibody production in both old mice and immune cells from the elderly.