Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The spread of cancer cells to regional lymph nodes through the lymphatic system is the first step in the dissemination of breast cancer. In several human cancers including those of the breast and prostate, the expression of vascular endothelial growth factor C (VEGF-C) is associated with lymph node metastasis. Our study was undertaken to evaluate the effect of VEGF-C on metastasis of poorly invasive, estrogen dependent human MCF-7 breast cancer cells. MCF-7 breast cancer cells transfected with VEGF-C (MCF-7-VEGF-C) were grown as tumors in the mammary fat pads of nude mice implanted with subcutaneous estrogen pellets. Tumor lymphangiogenesis and lymph node metastasis were studied immunohistochemically using antibodies against lymphatic vessel hyaluronan receptor -1 (LYVE-1), VEGF receptor-3 (VEGFR-3), PECAM-1, pan-cytokeratin and estrogen dependent pS2 protein. Overexpression of VEGF-C in transfected MCF-7 cells stimulated in vivo tumor growth in xenotransplanted mice without affecting estrogen responsiveness. The resulting tumors metastasized to the regional lymph nodes in 75% (in 6 mice out of 8, Experiment I) and in 62% (in 5 mice out of 8, Experiment II) of mice bearing orthotopic tumors formed by MCF-7-VEGF-C cells whereas no metastases were observed in mice bearing tumors of control vector-transfected MCF-7 cells (MCF-7-Mock). The density of intratumoral and peritumoral lymphatic vessels was increased in tumors derived from MCF-7-VEGF-C cells but not MCF-7-Mock cells. Taken together, our results show that VEGF-C overexpression stimulates tumor lymphangiogenesis and induces normally poorly metastatic estrogen-dependent MCF-7 tumors to disseminate to local lymph nodes. These data suggest that VEGF-C has an important role in lymph node metastasis of breast cancer even at its hormone-dependent early stage.

Type

Journal article

Journal

Int J Cancer

Publication Date

20/04/2002

Volume

98

Pages

946 - 951

Keywords

Animals, Blotting, Northern, Blotting, Western, Breast Neoplasms, Cell Division, Endothelial Growth Factors, Female, Humans, Immunoenzyme Techniques, Lymph Nodes, Lymphatic Metastasis, Mammary Neoplasms, Experimental, Mice, Mice, Inbred BALB C, Mice, Nude, Neoplasm Metastasis, Neovascularization, Pathologic, Tumor Cells, Cultured, Vascular Endothelial Growth Factor C