Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Potential mechanisms for stabilising and destabilising the spatially uniform steady states of systems of reaction-diffusion equations are examined. In the first instance the effect of introducing small periodic perturbations of the diffusion coefficients in a general system of reaction-diffusion equations is studied. Analytical results are proved for the case where the uniform steady state is marginally stable and demonstrate that the effect on the original system of such perturbations is one of stabilisation. Numerical simulations carried out on an ecological model of Levin and Segel (1976) confirm the analysis as well as extending it to the case where the perturbations are no longer small. Spatio-temporal delay is then introduced into the model. Analytical and numerical results are presented which show that the effect of the delay is to destabilise the original system. © Springer-Verlag 1996.

Original publication

DOI

10.1007/BF01834823

Type

Journal article

Journal

Journal of Mathematical Biology

Publication Date

01/01/1996

Volume

34

Pages

857 - 877