Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Targeted protein degradation is an invaluable tool in studying the function of proteins. Such a tool was not available in Trypanosoma brucei, an evolutionarily divergent eukaryote that causes human African trypanosomiasis. Here, we have adapted deGradFP (degrade green fluorescent protein [GFP]), a protein degradation system based on the SCF E3 ubiquitin ligase complex and anti-GFP nanobody, in T. brucei. As a proof of principle, we targeted a kinetoplastid kinetochore protein (KKT3) that constitutively localizes at kinetochores in the nucleus. Induction of deGradFP in a cell line that had both alleles of KKT3 tagged with yellow fluorescent protein (YFP) caused a more severe growth defect than RNAi in procyclic (insect form) cells. deGradFP also worked on a cytoplasmic protein (COPII subunit, SEC31). Given the ease in making GFP fusion cell lines in T. brucei, deGradFP can serve as a powerful tool to rapidly deplete proteins of interest, especially those with low turnover rates.

Original publication




Journal article


Wellcome Open Research


F1000 Research Ltd

Publication Date





175 - 175