Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chromosome segregation requires assembly of the macromolecular kinetochore complex onto centromeric DNA. While most eukaryotes have canonical kinetochore proteins that are widely conserved among eukaryotes, evolutionarily divergent kinetoplastids have a unique set of kinetochore proteins. Little is known about the mechanism of kinetochore assembly in kinetoplastids. Here we characterize two homologous kinetoplastid kinetochore proteins, KKT2 and KKT3, that constitutively localize at centromeres. They have three domains that are highly conserved among kinetoplastids: an N-terminal kinase domain of unknown function, the centromere localization domain in the middle, and the C-terminal domain that has weak similarity to polo boxes of Polo-like kinases. We show that the kinase activity of KKT2 is essential for accurate chromosome segregation, while that of KKT3 is dispensable for cell growth in Trypanosoma brucei. Crystal structures of their divergent polo boxes reveal differences between KKT2 and KKT3. We also show that the divergent polo boxes of KKT3 are sufficient to recruit KKT2 in trypanosomes. Furthermore, we demonstrate that the divergent polo boxes of KKT2 directly interact with KKT1 and that KKT1 interacts with KKT6. These results show that the divergent polo boxes of KKT2 and KKT3 are protein-protein interaction domains, which initiate kinetochore assembly in T. brucei.

Original publication




Journal article


Molecular Biology of the Cell


American Society for Cell Biology (ASCB)

Publication Date