Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A general strategy to identify and quantify sample molecules in dilute solution employing a new spectroscopic method for data registration and specific burst analysis denoted as multi-parameter fluorescence detection (MFD) was recently developed. While keeping the experimental advantage of monitoring single molecules diffusing through the microscopic open volume element of a confocal epi-illuminated set-up as in experiments of fluorescence correlation spectroscopy, MFD uses pulsed excitation and time-correlated single-photon counting to simultaneously monitor the evolution of the four-dimensional fluorescence information (intensity, F; lifetime, tau; anisotropy, r; and spectral range, lambda(r)) in real time and allows for exclusion of extraneous events for subsequent analysis. In this review, the versatility of this technique in confocal fluorescence spectroscopy will be presented by identifying freely diffusing single dyes via their characteristic fluorescence properties in homogenous assays, resulting in significantly reduced misclassification probabilities. Major improvements in background suppression are demonstrated by time-gated autocorrelation analysis of fluorescence intensity traces extracted from MFD data. Finally, applications of MFD to real-time conformational dynamics studies of fluorescence labeled oligonucleotides will be presented.


Journal article


J Biotechnol

Publication Date





163 - 180


Fluorescent Dyes, Green Fluorescent Proteins, Image Processing, Computer-Assisted, Luminescent Proteins, Models, Chemical, Oligonucleotides, Rhodamine 123, Spectrometry, Fluorescence, Time Factors