Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In this paper the theory of mixtures is used to develop a two-phase model of an avascular tumour, which comprises a solid, cellular, phase and a liquid phase. Mass and momentum balances which are used to derive the governing equations are supplemented by constitutive laws that distinguish the two phases and enable the stresses within the tumour to be calculated. Novel features of the model include the dependence of the cell proliferation rate on the cellular stress and the incorporation of mass exchange between the two phases. A combination of numerical and analytical techniques is used to investigate the sensitivity of equilibrium tumour configurations to changes in the model parameters. Variation of parameters such as the maximum cell proliferation rate and the rate of natural cell death yield results which are consistent with analyses performed on simpler tumour growth models and indicate that the two-phase formulation is a natural extension of the earlier models. New predictions relate to the impact of mechanical effects on the tumour's equilibrium size which decreases under increasing stress and/or external loading. In particular, as a parameter which measures the reduction in cell proliferation due to cell stress is increased a critical value is reached, above which the tumour is eliminated.

Original publication

DOI

10.1093/imammb/20.4.341

Type

Journal article

Journal

Math Med Biol

Publication Date

12/2003

Volume

20

Pages

341 - 366

Keywords

Cell Death, Cell Growth Processes, Cell Movement, Cell Size, Extracellular Fluid, Humans, Kinetics, Models, Biological, Neoplasms, Numerical Analysis, Computer-Assisted, Spheroids, Cellular