Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Due to their low immunogenicity in patients, humanized or fully human mAbs are becoming increasingly important for the treatment of a growing number of diseases, including cancer, infections, and immune disorders. Here, we describe a technology allowing for the rapid isolation of fully human mAbs. In contrast to previously described methods, B cells specific for an antigen of interest are directly isolated from peripheral blood mononuclear cells (PBMC) of human donors. Recombinant, antigen-specific single-chain Fv (scFv) libraries are generated from this pool of B cells and screened by mammalian cell surface display by using a Sindbis virus expression system. This method allows isolating antigen-specific antibodies by a single round of FACS. The variable regions (VRs) of the heavy chains (HCs) and light chains (LCs) are isolated from positive clones and recombinant fully human antibodies produced as whole IgG or Fab fragments. In this manner, several hypermutated high-affinity antibodies binding the Qbeta virus like particle (VLP), a model viral antigen, as well as antibodies specific for nicotine were isolated. All antibodies showed high expression levels in cell culture. The human nicotine-specific mAbs were validated preclinically in a mouse model. Thus, the technology presented here allows for rapid isolation of high-affinity, fully human antibodies with therapeutic potential from human volunteers.

Original publication

DOI

10.1073/pnas.0805942105

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

23/09/2008

Volume

105

Pages

14336 - 14341

Keywords

Allolevivirus, Animals, Antibodies, Monoclonal, Antibodies, Viral, Brain, Capsid Proteins, Flow Cytometry, Humans, Immunization, Passive, Leukocytes, Mononuclear, Mammals, Mice, Nicotine, Peptide Library, Sindbis Virus