Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The corpus luteum (CL) is an ovarian tissue that grows in the wound space created by follicular rupture. It produces the progesterone needed in the uterus to maintain pregnancy. Rapid growth of the CL and progesterone transport to the uterus require angiogenesis, the creation of new blood vessels from pre-existing ones, a process which is regulated by proteins that include fibroblast growth factor 2 (FGF2). In this paper we develop a system of time-dependent ordinary differential equations to model CL growth. The dependent variables represent FGF2, endothelial cells (ECs), luteal cells, and stromal cells (like pericytes), by assuming that the CL volume is a continuum of the three cell types. We assume that if the CL volume exceeds that of the ovulated follicle, then growth is inhibited. This threshold volume partitions the system dynamics into two regimes, so that the model may be classified as a Filippov (piecewise smooth) system. We show that normal CL growth requires an appropriate balance between the growth rates of luteal and stromal cells. We investigate how angiogenesis influences CL growth by considering how the system dynamics depend on the dimensionless EC proliferation rate, ρ₅. We find that weak (low ρ₅) or strong (high ρ₅) angiogenesis leads to 'pathological' CL growth, since the loss of CL constituents compromises progesterone production or delivery. However, for intermediate values of ρ₅, normal CL growth is predicted. The implications of these results for cow fertility are also discussed. For example, inadequate angiogenesis has been linked to infertility in dairy cows.

Original publication

DOI

10.1007/s00285-013-0722-2

Type

Journal article

Journal

J Math Biol

Publication Date

12/2014

Volume

69

Pages

1515 - 1546

Keywords

Animals, Cattle, Cell Proliferation, Computer Simulation, Corpus Luteum, Endothelial Cells, Female, Fibroblast Growth Factor 2, Luteal Cells, Models, Biological, Neovascularization, Physiologic, Pregnancy, Progesterone