Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This study compared ligand densities on antigen-presenting cells (APCs) needed for in vitro restimulation of in vivo primed T cells and for in vitro assessed T cell effector function. Spleen cells of lymphocytic choriomeningitis virus (LCMV)-primed mice were restimulated in vitro with graded amounts of virus-derived peptides using macrophages or a cloned dendritic cell line as APCs. To test for effector function of these cytotoxic T cells, the same APCs pulsed with graded amounts of the peptides were used as target cells in an in vitro 51Cr release assay. The same peptide concentration that rendered an APC restimulatory for primed cytotoxic T lymphocytes (CTLs) also rendered it susceptible for lysis by the same CTLs. In addition, the same peptide concentrations that made macrophages susceptible for CTL-mediated lysis induced proliferative responses in vitro of in vivo primed memory CTLs. Thus, restimulation of in vivo primed T cells--measured by either proliferation or cytotoxic effector function--or sensibilization of target cells for lysis requires similar ligand densities on APCs and is therefore, contrary to expectations, governed by similar overall avidity thresholds. These results have implications for CTL memory.

Original publication

DOI

10.1006/cimm.1997.1146

Type

Journal article

Journal

Cell Immunol

Publication Date

10/07/1997

Volume

179

Pages

16 - 21

Keywords

Amino Acid Sequence, Animals, Cell Division, Dendritic Cells, Immunologic Memory, Ligands, Lymphocyte Activation, Macrophages, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Molecular Sequence Data, T-Lymphocytes, Cytotoxic