Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The production and study of toxic proteins requires inducible expression systems with low basal level expression and high inducibility. Here, we describe bioprocess applications of the pCytTS temperature-regulatable Sindbis virus replicon-based expression system. We used green fluorescent protein as a marker protein to optimize the selection of stable transfected clones with increased expression levels. Using the optimized protocol, clones were constructed that produced the growth-inhibiting, anti-viral protein interferon beta (beta-IFN). Selected clones were analyzed for temperature-dependent beta-IFN production in adherent and suspension cultures in serum free medium. Specific expression levels were around 1.0 x 10(5) IU/10(6) cells/day (0.5 microg/10(6) cells/day) in suspension cultures and over 1.5 x 10(6) IU/mL/day (7.5 microg/mL/day) in hollow fiber reactors using adherent cells. Hexahistidine-tagged beta-IFN purified from T-flask cultures was highly glycosylated and showed high specific activity. beta-IFN mRNA amplified by the viral replicase for 10 days did not show an accumulation of mutations. These data suggest the applicability of the pCytTS-inducible expression system for the production of high-quality glycoproteins in different reactors.

Original publication




Journal article


Biotechnol Bioeng

Publication Date





602 - 609


Animals, Biomarkers, Cell Culture Techniques, Cell Line, Cloning, Molecular, Cricetinae, Gene Expression Regulation, Viral, Green Fluorescent Proteins, Humans, Interferon-beta, Kidney, Luminescent Proteins, Recombinant Fusion Proteins, Replicon, Sindbis Virus, Temperature, Transfection