Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Galectin-1 is a homodimeric protein with potent anti-inflammatory properties due to its ability to induce apoptosis in thymocytes and T cells. The galectin-1 subunits are not covalently linked but the monomers are in a dynamic equilibrium with the dimeric form. Since the affinity of the monomers for each other is rather low (in the range of 10(-5)M), the in vivo efficacy of galectin-1 is limited because the equilibrium is shifted towards the inactive monomeric form at lower concentrations. In order to overcome this problem, we designed a covalently linked form of the dimer based on the galectin-1 crystal structure. Here we show that this irreversibly dimeric form of galectin-1 is a potent inducer of apoptosis in murine thymocytes as well as murine mature T cells at concentrations 10-fold lower than wild-type galectin-1. This structurally optimized form of galectin-1 may therefore be a potentially powerful tool to treat chronic inflammatory diseases.

Original publication




Journal article


Mol Immunol

Publication Date





9 - 18


Amino Acid Sequence, Animals, Apoptosis, Cells, Cultured, Dimerization, Galectin 1, Hemagglutination Tests, Mice, Molecular Sequence Data, Spleen, T-Lymphocytes, Thymus Gland