Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Three major subsets of Ag-experienced CD8+ T cells have been identified according to their expression of CD62L and CD127. These markers are associated with central memory T cells (CD62L+ CD127+), effector memory T cells (CD162L- CD127+), and effector T cells (CD62L- CD127-). In this study we characterized the development of these three populations during acute and chronic viral infections and after immunization with virus-like particles and determined their lineage relation and functional and protective properties. We found that the balance between the three subsets was critically regulated by the availability of Ag and time. After initial down-regulation of CD127, the responding CD8+ T cell population down-regulated CD62L and re-expressed CD127. Dependent on Ag availability, the cells then further differentiated into CD62L- CD127- effector cells or, in the absence of Ag, re-expressed CD62L to become central memory T cells. Although all three populations efficiently produced effector cytokines such as IFN-gamma, CD62L- CD127- effector cells exhibited the highest ex vivo lytic potential. In contrast, CD62L+ CD127+ central memory T cells most efficiently produced IL-2 and proliferated extensively in vitro and in vivo upon antigenic restimulation. Strikingly, only effector and effector memory, but not central memory, T cells were able to protect against peripheral infection with vaccinia virus, whereas central memory T cells were most potent at protecting against systemic infection with lymphocytic choriomeningitis virus, indicating that the antiviral protective capacities of specific CD8+ T cell subsets are closely related to the nature of the challenging pathogen.

Original publication




Journal article


J Immunol

Publication Date





4686 - 4696


Animals, Biomarkers, CD8-Positive T-Lymphocytes, Cell Lineage, Cell Proliferation, Cytokines, Cytotoxicity, Immunologic, Immunologic Memory, Immunotherapy, Adoptive, L-Selectin, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Mice, Transgenic, Receptors, Antigen, T-Cell, Receptors, Interleukin-7, Spleen, T-Lymphocyte Subsets