Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Immunogenicity of the tryptophan-rich motif (TrpM) in the membrane-proximal ectodomain of the transmembrane (TM) glycoprotein of feline immunodeficiency virus (FIV) was investigated. Peptide 59, a peptide containing the TrpM of the TM of FIV, was covalently coupled to Qbeta phage virus-like particles (Qbeta-59) in the attempt to induce potent anti-TrpM B cell responses in cats. All Qbeta-59 immunized cats, but not cats that received a mixture of uncoupled Qbeta and peptide 59, developed antibodies that reacted with a same epitope in extensive binding and binding competition assays. The epitope recognized was composed of three amino acids, two of which are adjacent. However, Qbeta-59-immune sera failed to recognize whole FIV in all binding and neutralization assays performed. Furthermore, no reactivity against the TrpM was detected by screening sera from FIV-infected cats that had reacted with TM peptides, confirming that this epitope does not seem to be serologically functional in the FIV virion. The data suggest that TrpM may not be a suitable target for antiviral vaccine design.

Original publication

DOI

10.1016/j.virol.2004.02.017

Type

Journal article

Journal

Virology

Publication Date

01/05/2004

Volume

322

Pages

360 - 369

Keywords

Amino Acid Motifs, Amino Acid Sequence, Animals, Antibodies, Viral, B-Lymphocytes, Cats, Epitope Mapping, Epitopes, B-Lymphocyte, Feline Acquired Immunodeficiency Syndrome, Immunization, Immunodeficiency Virus, Feline, Membrane Glycoproteins, Neutralization Tests, Peptides, Tryptophan, Viral Envelope Proteins, Virion