Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: IgE-immune complexes (IgE-ICs) have been shown to enhance antibody and T-cell responses in mice by targeting CD23 (FcεRII), the low-affinity receptor for IgE on B cells. In humans, the mechanism by which CD23-expressing cells take up IgE-ICs and process them is not well understood. OBJECTIVE: To investigate this question, we compared the fate of IgE-ICs in human B cells and in CD23-expressing monocyte-derived dendritic cells (moDCs) that represent classical antigen-presenting cells and we aimed at studying IgE-dependent antigen presentation in both cell types. METHODS: B cells and monocytes were isolated from peripheral blood, and monocytes were differentiated into moDCs. Both cell types were stimulated with IgE-ICs consisting of 4-hydroxy-3-iodo-5-nitrophenylacetyl (NIP)-specific IgE JW8 and NIP-BSA to assess binding, uptake, and degradation dynamics. To assess CD23-dependent T-cell proliferation, B cells and moDCs were pulsed with IgE-NIP-tetanus toxoid complexes and cocultured with autologous T cells. RESULTS: IgE-IC binding was CD23-dependent in B cells, and moDCs and CD23 aggregation, as well as IgE-IC internalization, occurred in both cell types. Although IgE-ICs were degraded in moDCs, B cells did not degrade the complexes but recycled them in native form to the cell surface, enabling IgE-IC uptake by moDCs in cocultures. The resulting proliferation of specific T cells was dependent on cell-cell contact between B cells and moDCs, which was explained by increased upregulation of costimulatory molecules CD86 and MHC class II on moDCs induced by B cells. CONCLUSIONS: Our findings argue for a novel model in which human B cells promote specific T-cell proliferation on IgE-IC encounter. On one hand, B cells act as carriers transferring antigen to more efficient antigen-presenting cells such as DCs. On the other hand, B cells can directly promote DC maturation and thereby enhance T-cell stimulation.

Original publication




Journal article


J Allergy Clin Immunol

Publication Date





557 - 568.e6


B cells, FcεRII (CD23), IgE, IgE-immune complexes, T-cell activation, antigen recycling, moDC, polarization