Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this article a model for the evolution of a spherically symmetric, nonnecrotic tumor is presented. The effects of nutrients and inhibitors on the existence and stability of time-independent solutions are studied. With a single nutrient and no inhibitors present, the trivial solution, which corresponds to a state in which no tumor is present, persists for all parameter values, whereas the nontrivial solution, which corresponds to a tumor of finite size, exists for only a prescribed range of parameters, which corresponds to a balance between cell proliferation and cell death. Stability analysis, based on a two-timing method, suggests that, where it exists, the nontrivial solution is stable and the trivial solution unstable. Otherwise, the trivial solution is stable. Modification to these characteristic states brought about by the presence of different types of inhibitors are also investigated and shown to have significant effect. Implications of the model for the treatment of cancer are also discussed.

Original publication

DOI

10.1016/0025-5564(94)00117-3

Type

Journal article

Journal

Math Biosci

Publication Date

12/1995

Volume

130

Pages

151 - 181

Keywords

Cell Division, Growth Inhibitors, Humans, Mathematics, Models, Biological, Necrosis, Neoplasms