Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To ensure its sustained growth, a tumour may secrete chemical compounds which cause neighbouring capillaries to form sprouts which then migrate towards it, furnishing the tumour with an increased supply of nutrients. In this paper a mathematical model is presented which describes the migration of capillary sprouts in response to a chemoattractant field set up by a tumour-released angiogenic factor, sometimes termed a tumour angiogenesis factor (TAF). The resulting model admits travelling wave solutions which correspond either to successful neovascularization of the tumour or failure of the tumour to secure a vascular network, and which exhibit many of the characteristic features of angiogenesis. For example, the increasing speed of the vascular front, and the evolution of an increasingly developed vascular network behind the leading capillary tip front (the brush-border effect) are both discernible from the numerical simulations. Through the development and analysis of a simplified caricature model, valuable insight is gained into how the balance between chemotaxis, tip proliferation and tip death affects the tumour's ability to induce a vascular response from neighbouring blood vessels. In particular, it is possible to define the success of angiogenesis in terms of known parameters, thereby providing a potential framework for assessing the viability of tumour neovascularization in terms of measurable quantities.

Original publication

DOI

10.1007/BF02460635

Type

Journal article

Journal

Bull Math Biol

Publication Date

05/1995

Volume

57

Pages

461 - 486

Keywords

Animals, Computer Simulation, Humans, Mathematics, Models, Biological, Neoplasms, Neovascularization, Pathologic, Nonlinear Dynamics