Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AMG 596 is a bispecific T-cell engager (BiTE) immuno-oncology therapy in clinical development for treatment of glioblastoma multiforme (GBM), the most common primary brain tumor in adults with limited therapeutic options. AMG 596 is composed of two single-chain variable fragments that simultaneously bind to the tumor-specific antigen, EGFR variant III (EGFRvIII), on GBM cells and to CD3 on T cells, thereby activating T cells to proliferate and secrete cytotoxic substances that induce lysis of the bound tumor cell. T-cell-redirected lysis by AMG 596 is very potent; in vitro studies revealed EC50 values in the low picomolar range, and in vivo studies showed that AMG 596 treatment significantly increased the overall survival of mice bearing EGFRvIII-expressing orthotopic tumors. In addition, AMG 596 activity is highly specific; no AMG 596-induced T-cell activity can be observed in assays with EGFRvIII-negative GBM cells, and no signs of toxicity and activity were observed in cynomolgus monkeys, which lack expression of EGFRvIII on normal tissues. With EGFRvIII-expressing GBM cells, we showed shedding of EGFRvIII-containing membrane vesicles, followed by vesicle uptake and EGFRvIII cell surface presentation by EGFRvIII noncoding GBM cells. Cell membrane presentation of EGFRvIII following microvesicle transfer allows engagement by AMG 596, resulting in T-cell activation and T-cell-dependent lysis of GBM cells. Together, these data show a compelling preclinical efficacy and safety profile of AMG 596, supporting its development as a novel immunotherapy for treatment of GBM.

Original publication

DOI

10.1158/1535-7163.MCT-20-0508

Type

Journal article

Journal

Mol Cancer Ther

Publication Date

05/2021

Volume

20

Pages

925 - 933

Keywords

Animals, Antibodies, Bispecific, Brain Neoplasms, Cell Line, Tumor, ErbB Receptors, Glioblastoma, Humans, Immunotherapy, Mice