Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent breakthroughs in protein structure prediction have enhanced the precision and speed at which protein configurations can be determined. Additionally, molecular dynamics (MD) simulations serve as a crucial tool for capturing the conformational space of proteins, providing valuable insights into their structural fluctuations. However, the scope of MD simulations is often limited by the accessible timescales and the computational resources available, posing challenges to comprehensively exploring protein behaviors. Recently emerging approaches have focused on expanding the capability of AlphaFold2 (AF2) to predict conformational substates of protein. Here, we benchmark the performance of various workflows that have adapted AF2 for ensemble prediction and compare the obtained structures with ensembles obtained from MD simulations and NMR. We provide an overview of the levels of performance and accessible timescales that can currently be achieved with machine learning (ML) based ensemble generation. Significant minima of the free energy surfaces remain undetected.

Original publication

DOI

10.1016/j.str.2024.09.001

Type

Journal article

Journal

Structure

Publication Date

20/09/2024

Keywords

NMR, X-ray, antibodies, conformational ensemble prediction, machine learning, molecular dynamics simulations, proteases, protein free energy landscapes, structure prediction