Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sandhoff disease is a lysosomal storage disorder characterized by G(M2) ganglioside accumulation in the central nervous system (CNS) and periphery. It results from mutations in the HEXB gene, causing a deficiency in beta-hexosaminidase. Bone marrow transplantation (BMT), which augments enzyme levels, and substrate deprivation (using the glycosphingolipid biosynthesis inhibitor N-butyldeoxynojirimycin [NB-DNJ]) independently have been shown to extend life expectancy in a mouse model of Sandhoff disease. The efficacy of combining these 2 therapies was evaluated. Sandhoff disease mice treated with BMT and NB-DNJ survived significantly longer than those treated with BMT or NB-DNJ alone. When the mice were subdivided into 2 groups on the basis of their donor bone marrow-derived CNS enzyme levels, the high enzyme group exhibited a greater degree of synergy (25%) than the group as a whole (13%). Combination therapy may therefore be the strategy of choice for treating the infantile onset disease variants.


Journal article



Publication Date





327 - 329


1-Deoxynojirimycin, Animals, Bone Marrow Transplantation, Brain, Diagnostic Techniques, Neurological, Disease Models, Animal, Enzyme Inhibitors, Glycosphingolipids, Hexosaminidase B, Mice, Sandhoff Disease, Spinal Cord, Survival Rate, beta-N-Acetylhexosaminidases