Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genomically imprinted genes are those for which expression is dependent on the sex of the parent from which they are derived. Numerous theories have been proposed for the evolution of genomic imprinting; one theory is that it is an intra-individual manifestation of classical parent-offspring conflict. This theory is unique in predicting that an arms race may develop between maternally and paternally derived genes for the control of foetal growth demands. Such antagonistic coevolution may be mediated through changes in the structure of the proteins concerned. Comparable coevolution is the most likely explanation for the rapid changes seen in antigenic components of parasites and antigen recognition components of immune systems. We have examined the evolution of insulin-like growth factor (Igf2) and its antagonistic receptor (Igf2r) and find that, in contrast to immune genes, at the sites of mutual binding they are highly conserved. In addition, we have analysed the rate of molecular evolution of seven imprinted genes (including Igf2 and Igf2r), sequenced in both mouse and rat, and find that this is the same as that of non-imprinted receptors and significantly lower than that of immune genes (controlling for differences in mutation rate). Contrary to the expectations of the conflict hypothesis, we hence find no evidence for antagonistic coevolution of imprinted genes mediated by changes in sequence.

Original publication




Journal article


Proceedings of the Royal Society B: Biological Sciences

Publication Date





739 - 746