Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

VEGF and Angiopoietin-1 requisitely collaborate during blood vessel development. While Angiopoietin-1 obligately activates its Tie2 receptor, Angiopoietin-2 can activate Tie2 on some cells, while it blocks Tie2 activation on others. Our analysis of mice lacking Angiopoietin-2 reveals that Angiopoietin-2 is dispensable for embryonic vascular development but is requisite for subsequent angiogenic remodeling. Unexpectedly, mice lacking Angiopoietin-2 also exhibit major lymphatic vessel defects. Genetic rescue with Angiopoietin-1 corrects the lymphatic, but not the angiogenesis, defects, suggesting that Angiopoietin-2 acts as a Tie2 agonist in the former setting, but as an antagonist in the latter setting. Our studies define a vascular growth factor whose primary role is in postnatal angiogenic remodeling and also demonstrate that members of the VEGF and Angiopoietin families collaborate during development of the lymphatic vasculature.

Type

Journal article

Journal

Dev Cell

Publication Date

09/2002

Volume

3

Pages

411 - 423

Keywords

Angiogenesis Inducing Agents, Angiopoietin-1, Angiopoietin-2, Animals, Body Patterning, Chylous Ascites, DNA, Complementary, Edema, Eye, Gene Expression Regulation, Developmental, Gene Targeting, Homozygote, Lymphatic System, Membrane Glycoproteins, Mice, Mice, Knockout, Neovascularization, Physiologic, Promoter Regions, Genetic, Retinal Vessels