Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We introduce and study a set of training-free methods of an information-theoretic and algorithmic complexity nature that we apply to DNA sequences to identify their potential to identify nucleosomal binding sites. We test the measures on well-studied genomic sequences of different sizes drawn from different sources. The measures reveal the known in vivo versus in vitro predictive discrepancies and uncover their potential to pinpoint high and low nucleosome occupancy. We explore different possible signals within and beyond the nucleosome length and find that the complexity indices are informative of nucleosome occupancy. We found that, while it is clear that the gold standard Kaplan model is driven by GC content (by design) and by k-mer training; for high occupancy, entropy and complexity-based scores are also informative and can complement the Kaplan model.

Original publication




Journal article


Nucleic Acids Res

Publication Date