Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2019 The Authors Oncolytic viruses represent an emerging approach to cancer therapy. However, better understanding of their interaction with the host cancer cell and approaches to enhance their efficacy are needed. Here, we investigate the effect of chemically induced endoplasmic reticulum (ER) stress on the activity of the chimeric group B adenovirus Enadenotucirev, its closely related parental virus Ad11p, and the archetypal group C oncolytic adenovirus Ad5. We show that treatment of colorectal and ovarian cancer cell lines with thapsigargin or ionomycin caused an influx of Ca2+, leading to an upregulation in E1A transcript and protein levels. Increased E1A protein levels, in turn, increased levels of expression of the E2B viral DNA polymerase, genome replication, late viral protein expression, infectious virus particle production, and cell killing during Enadenotucirev and Ad11p, but not Ad5, infection. This effect was not due to the induction of ER stress, but rather the influx of extracellular Ca2+ and consequent increase in protein kinase C activity. These results underscore the importance of Ca2+ homeostasis during adenoviral infection, indicate a signaling pathway between protein kinase C and E1A, and raise the possibility of using Ca2+ flux-modulating agents in the manufacture and potentiation of oncolytic virotherapies.

Original publication




Journal article


Molecular Therapy - Oncolytics

Publication Date





117 - 130