Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractMotivationInconsistent, analytical noise introduced either by the sequencing technology or by the choice of read-processing tools can bias bulk RNA-seq analyses by shifting the focus to the variation in expression of low-abundance transcripts; as a consequence these highly-variable genes are often included the differential expression (DE) call and impact the interpretation of results.ResultsTo illustrate the effects of “noise”, we present simulated datasets following closely the characteristics of a H.sapiens and a M.musculus dataset, respectively, highlighting the extent of technical-noise in both a high inter-individual variability (H. sapiens) and reduced variability (M. Musculus) setup. The sequencing-induced noise is assessed using correlations of distributions of expression across transcripts; analytical noise is evaluated through side-by-side comparisons of several standard choices. The proportion of genes in the noise-range differs for each tool combi-nation. Data-driven, sample-specific noise-thresholds were applied to reduce the impact of low-level variation. Noise-adjustment reduced the number of significantly DE genes and gave rise to convergent calls across tool combinations.AvailabilityThe code for determining the sequence-derived noise is available for download from:; the code for running the analysis is available for download from:

Original publication




Journal article

Publication Date