Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The kinetics of bond formation between spherical beads coated with CD48 and CD2-derivatized surfaces was studied with a flow chamber. For a given shear rate, the binding frequency was exquisitively sensitive to the particle velocity. Flow equations were used to derive the particle-to-surface distance from the velocity, thus yielding a relationship between this distance and the binding rate. Numerical values of the binding site densities allowed absolute determination of the rate of association between two individual molecules as a function of the distance between attachment points. In our model, this rate was about 0.03 s-1 at 10 nm separation, and it was inversely proportional to the cube of the distance.


Journal article



Publication Date





239 - 244


Animals, Antigens, CD, CD2 Antigens, CD48 Antigen, Cell Adhesion Molecules, Kinetics, Ligands, Microspheres, Protein Binding, Rats