Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The identification of biologically active compounds from high-throughput screening (HTS) can involve considerable postscreening analysis to verify the nature of the sample activity. In this study we evaluated the performance of micro-parallel liquid chromatography (microPLC) as a separation-based enzyme assay platform for follow-up of compound activities found in quantitative HTS of two different targets, a hydrolase and an oxidoreductase. In an effort to couple secondary analysis to primary screening we explored the application of microPLC immediately after a primary screen. In microPLC, up to 24 samples can be loaded and analyzed simultaneously via high-performance liquid chromatography within a specially designed cartridge. In a proof-of-concept experiment for screen-coupled actives verification, we identified, selected, and consolidated the contents of "active" wells from a 1,536-well format HTS experiment into a 384-well plate and subsequently analyzed these samples by a 24-channel microPLC system. The method utilized 0.6% of the original 6-microl 1,536-well assay for the analysis. The analysis revealed several non-biological-based "positive" samples. The main examples included "false" enzyme activators resulting from an increase in well fluorescence due to fluorescent compound or impurity. The microPLC analysis also provided a verification of the activity of two activators of glucocerebrosidase. We discuss the benefits of microPLC and its limitations from the standpoint of ease of use and integration into a seamless postscreen workflow.

Original publication

DOI

10.1089/adt.2007.097

Type

Journal article

Journal

Assay Drug Dev Technol

Publication Date

12/2007

Volume

5

Pages

815 - 824

Keywords

Chromatography, Gas, Chromatography, High Pressure Liquid, Chromatography, Liquid, Dose-Response Relationship, Drug, Drug Evaluation, Preclinical, Enzyme Activation, False Positive Reactions, Fluorometry, Glucosylceramidase, Hydroxymethylglutaryl CoA Reductases, Indicators and Reagents, Spectrometry, Fluorescence, Spectrophotometry, Ultraviolet