Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Eimerian parasites display a biologically interesting range of phenotypic variation. In addition to a wide spectrum of drug-resistance phenotypes that are expressed similarly by many other parasites, the Eimeria spp. present some unique phenotypes. For example, unique lines of Eimeria spp. include those selected for growth in the chorioallantoic membrane of the embryonating hens egg or for faster growth (precocious development) in the mature host. The many laboratory-derived egg-adapted or precocious lines also share a phenotype of a marked attenuation of virulence, the basis of which is different as a consequence of the in ovo or in vivo selection procedures used. Of current interest is the fact that some wild-type populations of Eimeria maxima are characterized by an ability to induce protective immunity that is strain-specific. The molecular basis of phenotypes that define Eimeria spp. is now increasingly amenable to investigation, both through technical improvements in genetic linkage studies and the availability of a comprehensive genome sequence for the caecal parasite E. tenella. The most exciting phenotype in the context of vaccination and the development of new vaccines is the trait of strain-specific immunity associated with E. maxima. Recent work in this laboratory has shown that infection of two inbred lines of White Leghorn chickens with the W strain of E. maxima leads to complete protection to challenge with the homologous parasite, but to complete escape of the heterologous H strain, i.e. the W strain induces an exquisitely strain-specific protective immune response with respect to the H strain. This dichotomy of survival in the face of immune-mediated killing has been examined further and, notably, mating between a drug-resistant W strain and a drug-sensitive H strain leads to recombination between the genetic loci responsible for the specificity of protective immunity and resistance to the anticoccidial drug robenidine. Such a finding opens the way forward for genetic mapping of the loci responsible for the induction of protective immunity and integration with the genome sequencing efforts.

Original publication

DOI

10.1017/S0031182004006845

Type

Conference paper

Publication Date

2004

Volume

128 Suppl 1

Pages

S33 - S42

Keywords

Animals, Antigens, Protozoan, Chromosome Mapping, Coccidiosis, Eimeria, Genome, Protozoan, Polymorphism, Genetic, Protozoan Vaccines, Recombination, Genetic