Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Human type 2 cytotoxic T (Tc2) cells are enriched in severe eosinophilic asthma and can contribute to airway eosinophilia. PGD2 and its receptor PGD2 receptor 2 (DP2) play important roles in Tc2 cell activation, including migration, cytokine production, and survival. In this study, we revealed novel, to our knowledge, functions of the PGD2/DP2 axis in Tc2 cells to induce tissue-remodeling effects and IgE-independent PGD2 autocrine production. PGD2 upregulated the expression of tissue-remodeling genes in Tc2 cells that enhanced the fibroblast proliferation and protein production required for tissue repair and myofibroblast differentiation. PGD2 stimulated Tc2 cells to produce PGD2 using the routine PGD2 synthesis pathway, which also contributed to TCR-dependent PGD2 production in Tc2 cells. Using fevipiprant, a specific DP2 antagonist, we demonstrated that competitive inhibition of DP2 not only completely blocked the cell migration, adhesion, proinflammatory cytokine production, and survival of Tc2 cells triggered by PGD2 but also attenuated the tissue-remodeling effects and autocrine/paracrine PGD2 production in Tc2 induced by PGD2 and other stimulators. These findings further confirmed the anti-inflammatory effect of fevipiprant and provided a better understanding of the role of Tc2 cells in the pathogenesis of asthma.

Original publication

DOI

10.4049/jimmunol.2001245

Type

Journal article

Journal

J Immunol

Publication Date

19/05/2021