Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We investigate the sequence of patterns generated by a reaction-diffusion system on a growing domain. We derive a general evolution equation to incorporate domain growth in reaction-diffusion models and consider the case of slow and isotropic domain growth in one spatial dimension. We use a self-similarity argument to predict a frequency-doubling sequence of patterns for exponential domain growth and we find numerically that frequency-doubling is realized for a finite range of exponential growth rate. We consider pattern formation under different forms for the growth and show that in one dimension domain growth may be a mechanism for increased robustness of pattern formation.


Journal article


Bull Math Biol

Publication Date





1093 - 1120


Algorithms, Animals, Body Patterning, Growth, Humans, Kinetics, Models, Biological