Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Emergency admissions for infection often lack initial diagnostic certainty. COVID-19 has highlighted a need for novel diagnostic approaches to indicate likelihood of viral infection in a pandemic setting. We aimed to derive and validate a blood transcriptional signature to detect viral infections, including COVID-19, among adults with suspected infection who presented to the emergency department. Methods: Individuals (aged ≥18 years) presenting with suspected infection to an emergency department at a major teaching hospital in the UK were prospectively recruited as part of the Bioresource in Adult Infectious Diseases (BioAID) discovery cohort. Whole-blood RNA sequencing was done on samples from participants with subsequently confirmed viral, bacterial, or no infection diagnoses. Differentially expressed host genes that met additional filtering criteria were subjected to feature selection to derive the most parsimonious discriminating signature. We validated the signature via RT-qPCR in a prospective validation cohort of participants who presented to an emergency department with undifferentiated fever, and a second case-control validation cohort of emergency department participants with PCR-positive COVID-19 or bacterial infection. We assessed signature performance by calculating the area under receiver operating characteristic curves (AUROCs), sensitivities, and specificities. Findings: A three-gene transcript signature, comprising HERC6, IGF1R, and NAGK, was derived from the discovery cohort of 56 participants with bacterial infections and 27 with viral infections. In the validation cohort of 200 participants, the signature differentiated bacterial from viral infections with an AUROC of 0·976 (95% CI 0·919-1·000), sensitivity of 97·3% (85·8-99·9), and specificity of 100% (63·1-100). The AUROC for C-reactive protein (CRP) was 0·833 (0·694-0·944) and for leukocyte count was 0·938 (0·840-0·986). The signature achieved higher net benefit in decision curve analysis than either CRP or leukocyte count for discriminating viral infections from all other infections. In the second validation analysis, which included SARS-CoV-2-positive participants, the signature discriminated 35 bacterial infections from 34 SARS-CoV-2-positive COVID-19 infections with AUROC of 0·953 (0·893-0·992), sensitivity 88·6%, and specificity of 94·1%. Interpretation: This novel three-gene signature discriminates viral infections, including COVID-19, from other emergency infection presentations in adults, outperforming both leukocyte count and CRP, thus potentially providing substantial clinical utility in managing acute presentations with infection. Funding: National Institute for Health Research, Medical Research Council, Wellcome Trust, and EU-FP7.

Original publication




Journal article


Lancet Microbe

Publication Date