Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Endometriosis is a common chronic inflammatory condition causing pelvic pain and infertility in women, with limited treatment options and 50% heritability. We leveraged genetic analyses in two species with spontaneous endometriosis, humans and the rhesus macaque, to uncover treatment targets. We sequenced DNA from 32 human families contributing to a genetic linkage signal on chromosome 7p13-15 and observed significant overrepresentation of predicted deleterious low-frequency coding variants in NPSR1, the gene encoding neuropeptide S receptor 1, in cases (predominantly stage III/IV) versus controls (P = 7.8 × 10-4). Significant linkage to the region orthologous to human 7p13-15 was replicated in a pedigree of 849 rhesus macaques (P = 0.0095). Targeted association analyses in 3194 surgically confirmed, unrelated cases and 7060 controls revealed that a common insertion/deletion variant, rs142885915, was significantly associated with stage III/IV endometriosis (P = 5.2 × 10-5; odds ratio, 1.23; 95% CI, 1.09 to 1.39). Immunohistochemistry, qRT-PCR, and flow cytometry experiments demonstrated that NPSR1 was expressed in glandular epithelium from eutopic and ectopic endometrium, and on monocytes in peritoneal fluid. The NPSR1 inhibitor SHA 68R blocked NPSR1-mediated signaling, proinflammatory TNF-α release, and monocyte chemotaxis in vitro (P < 0.01), and led to a significant reduction of inflammatory cell infiltrate and abdominal pain (P < 0.05) in a mouse model of peritoneal inflammation as well as in a mouse model of endometriosis. We conclude that the NPSR1/NPS system is a genetically validated, nonhormonal target for the treatment of endometriosis with likely increased relevance to stage III/IV disease.

Original publication

DOI

10.1126/scitranslmed.abd6469

Type

Journal article

Journal

Sci Transl Med

Publication Date

25/08/2021

Volume

13