Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors.
Tian Y-M., Yeoh KK., Lee MK., Eriksson T., Kessler BM., Kramer HB., Edelmann MJ., Willam C., Pugh CW., Schofield CJ., Ratcliffe PJ.
Hypoxia inducible factor (HIF) is regulated by dual pathways involving oxygen-dependent prolyl and asparaginyl hydroxylation of its α-subunits. Prolyl hydroxylation at two sites within a central degradation domain promotes association of HIF-α with the von Hippel-Lindau ubiquitin E3 ligase and destruction by the ubiquitin-proteasome pathways. Asparaginyl hydroxylation blocks the recruitment of p300/CBP co-activators to a C-terminal activation domain in HIF-α. These hydroxylations are catalyzed by members of the Fe(II) and 2-oxoglutarate (2-OG) oxygenase family. Activity of the enzymes is suppressed by hypoxia, increasing both the abundance and activity of the HIF transcriptional complex. We have used hydroxy residue-specific antibodies to compare and contrast the regulation of each site of prolyl hydroxylation (Pro(402), Pro(564)) with that of asparaginyl hydroxylation (Asn(803)) in human HIF-1α. Our findings reveal striking differences in the sensitivity of these hydroxylations to hypoxia and to different inhibitor types of 2-OG oxygenases. Hydroxylation at the three sites in endogenous human HIF-1α proteins was suppressed by hypoxia in the order Pro(402) > Pro(564) > Asn(803). In contrast to some predictions from in vitro studies, prolyl hydroxylation was substantially more sensitive than asparaginyl hydroxylation to inhibition by iron chelators and transition metal ions; studies of a range of different small molecule 2-OG analogues demonstrated the feasibility of selectively inhibiting either prolyl or asparaginyl hydroxylation within cells.