Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Physical and chemical hypoxia have been widely used in the study of hypoxic injury; however, both of these hypoxia models have their own limitations. Physical hypoxia is usually difficult to control and maintain. Chemical hypoxia, which is usually induced by chemical hypoxia-mimicking agents, such as CoCl(2), may result in heavy metal toxicity or impose security threats. To develop a more suitable hypoxia model, we focused on sodium sulfite (Na(2)SO(3)) and evaluated its ability to remove dissolved oxygen in aqueous solutions. Our results showed that sodium sulfite successfully induced hypoxic conditions. The degree of hypoxia and the guarantee period of the sodium sulfite solution could be easily controlled by the concentration of soluble sodium sulfite. In addition, we used sodium sulfite to create a hypoxia model in Caenorhabditis elegans. Similar to physical hypoxia, the sodium sulfite solutions induced hypoxia-related death in the worms and led to morphologic cell defects and C. elegans hypoxia inducible factor 1 stabilization. Taken together, our data show that sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in C. elegans.

Original publication




Journal article


J Biol Inorg Chem

Publication Date





267 - 274


Animals, Blotting, Western, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Hypoxia, Sulfites