Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Somitogenesis, the process by which a bilaterally symmetric pattern of cell aggregations is laid down in a cranio-caudal sequence in early vertebrate development, provides an excellent model study for the coupling of interactions at the molecular and cellular level. Here, we review some of the key experimental results and theoretical models related to this process. We extend a recent chemical pre-pattern model based on the cell cycle Journal of Theoretical Biology 207 (2000) 305-316, by including cell movement and show that the resultant model exhibits the correct spatio-temporal dynamics of cell aggregation. We also postulate a model to account for the recently observed spatio-temporal dynamics at the molecular level.

Type

Journal article

Journal

C R Biol

Publication Date

03/2002

Volume

325

Pages

179 - 189

Keywords

Animals, Body Patterning, Cell Aggregation, Cell Count, Cell Cycle, Cell Differentiation, Cell Movement, Humans, Mathematics, Models, Biological, Somites