Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The high natural abundance of aluminium makes the respective fluorophores attractive for various optical applications, but photoluminescence quantum yields above 0.7 have yet not been reported for solutions of aluminium complexes. In this contribution, a dinuclear aluminium(III) complex featuring enhanced photoluminescence properties is described. Its facile one-pot synthesis originates from a readily available precursor and trimethyl aluminium. In solution, the complex exhibits an unprecedented photoluminescence quantum yield near unity (Φabsolute 1.0 ± 0.1) and an excited-state lifetime of 2.3 ns. In the solid state, J-aggregation and aggregation-caused quenching are noticed, but still quantum yields of 0.6 are observed. Embedding the complex in electrospun non-woven fabrics yields a highly fluorescent fleece possessing a quantum yield of 0.9 ± 0.04.

Original publication




Journal article


Angew Chem Int Ed Engl

Publication Date



Aluminium, dinuclear complex, fluorophore, luminescence, quantum yield